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Let C(X) be the set of real valued functions that are defined on a finite set
of points X, and let A be an n-dimensional linear subspace of C(X). For any
fin C(X), the element ¢* in A is a best L I approximation from A to f if it
minimizes the expression

\' If(x) - ¢(x)l,
XEX

¢ EA. (1)

Two applications in which the calculation of ¢* is important are fitting to
numerical data, and discrete models of continuous L I approximation
problems. The calculation of a best L 1 approximation in the discrete case
can be solved as a linear programming problem 111. A solution always
exists, but it need not be unique [2].

The purpose of this note is to express the conditions for the solution of the
linear programming problem in terms of the original data. Thus a charac­
terization theorem for ¢* is obtained, that is more useful than the usual
characterization theorem [2 j, which is as follows.

THEOREM I. Let ¢* be a trial approximation from A to f, let Z c X be
the set of zeros

Z= {x:¢*(x)=f(x)},

173

(2)
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let Y contain the points of X that are not in Z, and let s he the sign function

II,
s(x) = II-I,

f(x) > 9*(x)

f(x) < ¢*(x)'
xE Y, (3 )

A necessary and sufficient condition for Ii" 10 be a best L I approximation
from A 10 f is that the inequality

I~'l s(x) ~(x) i (\~~ 1¢(x)1 (4)

holds for all functions ¢ in A,

In practice this theorem may be of little help in determining whether a
trial approximation is best, because the number of different functions I/J that
can occur in expression (4) is infinite. However, only a finite number of
inequalities have to be tested to find out whether a linear programming
problem is solved. The new characterization theorem that is presented is
derived from this remark.

We let B be the linear subspace of A, whose functions take the value zero
at all points of Z. If IjI is an element of B that satisfies the condition

\ ' s(x) ljI(x) * 0,
xE }'

(5 )

then it follows, from the proof of Theorem I in 121, that the trial approx
imation 1/)* can be improved by the addition of a multiple of 1jI. To discover
whether such improvements can be obtained, it is only necessary to check
condition (5) for a set of functions {1jI f that is a basis of B. We suppose that
these tests fail to resolve whether ¢* is a best L I approximation from A to f
Then, because 'the addition of an element of B to ~ in inequality (4) makes
no difference, we may restrict the functions I/J in expression (4) to any linear
subspace of A that is complementary to B. Because we may regard the
complementary subspace as a set of approximating functions that takes the
place of A, we assume without loss of generality that the complementary
subspace is A itself. This assumption gives the helpful property that, if I/J is
an element of A such that the numbers {¢(x), x E Zf are all zero, then ~ is
the zero element. Hence the number of points in Z is at least the dimension
of A, namely, n.

The characterization theorem that comes from linear programming is
particularly elegant in the frequently occurring case when the number of
points in Z is exactly n. It is as follows.

THEOREM 2. Let the conditions of Theorem I be sati~fied, let Z contain
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exact~v n points jz;; j = 1,2,... , n r, and let the cardinal functions 11;;
i = I, 2, .... n f in A be defined by the equations

i.j= 1,2,.... n. (6)

A necessary and sufficient condition for ¢* to be a best L I approximation
from A to I is that the inequalities

I.~~. s(x) l;(x) 1< L i = L 2,... , n, (7)

are satisfied.

Proof If ¢* is a best approximation, then, by Theorem I, inequality (4)
must hold when f/J = Ii' Hence condition (7) is necessary. To prove the
converse result, we write a general element ¢ E A in the form

(8)

Expressions (6), (7) and (8) imply the inequality

I.~~ s(x) ¢(x)I~ j\~ l'Aj'l x~~. s(x) l;(x) II

= \ ' 1¢(x)l·
XEZ

(9)

It follows from Theorem 1 that condition (7) is sufficient for ¢* to be a best
approximation.

The theorem is useful because it shows that, when its conditions are
satisfied, then one can find out whether a trial approximation is best by
testing only n inequalities. The equivalent statement in linear programming
terms is that, if one requires the least value of a linear function that is
defined on a convex polyhedron in the space of the variables, and if a trial
vector of variables is at a vertex of the polyhedron, then this vector gives the
solution if and only if the objective function cannot be reduced by a move
along one of the edges of the polyhedron that pass through the vertex. Edges
correspond to cardinal functions.

This point of view may be used to extend Theorem 2 to the case when the
set Z contains more than n points. In geometrical terms we consider the
situation where more than n faces of the polyhedron meet at the trial vertex.
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Hence the number of edges that join at the vertex is greater than before. It is
still true that one can discover whether the trial vertex is optimal by testing
the change in the objective function just along these edges. Therefore a
discrete characterization condition can be obtained. We now define a
function / in A to be a cardinal function if there exists a subset of Z. Z I say.
that contains exactly (n- 1) points, and that is such that the equations

/(x) = O.

110 )
~ 1/(x)l-
r E.Z

determine / uniquely except for its overall sign. The trial approximation 9* is
optimal if and only if the inequality

I I

I~'I s(x) I(x) I ~ I (II)

is satisfied for all cardinal functions.
A disadvantage of these conditions is that the work of testing them can be

very great when the number of points in Z is much larger than n. Therefore
another characterization theorem is given. We let the points of Z be
1Zj;j = I, 2, ... , m l, m > n, and we suppose that they are ordered in any way
that allows functions 11;; i = 1, 2,... , n f in A to be defined by Eq. (6). The
theorem depends on the remark that all the information that is needed to test
whether ¢* is optimal is contained in the numbers llJz j ); i = 1, 2.... , n;
j = n + 1, n + 2, ... , m f and in the left hand sides of the inequalities (7).

THEOREM 3. Let the conditions of Theorem 2 be satisfied, except that Z
is the set 1zj;j = 1,2,... , m f, where m > n. A necessary and sufficient
condition for ¢* to be a best L I approximation from A to f is that there exist
real numbers 1Bj ; j = n + I, n + 2, ... , m f, such that the inequalities

and

j = n + I, n + 2, ..., m ( 12)

are obtained.

i = 1,2,... , n, (13 )

Proof We express a general element of A in the form (8). If inequalities
(12) and (13) hold, then the left hand side of expression (4) satisfies the
bound
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I \ ' s(x) ~(x) I< I \ ' s(x) ~(x) + \', 8,f/>(z,) I + ':::0 i¢(Zj)t
tEl' \E} 11+1 In·'')

= \ ' 1~(x)lo
XEZ

(14)

It follows from Theorem 1 that conditions (12) and (13) are sufficient for rp*
to be a best approximation.

In order to prove that they are also necessary. we let ¢* be a best approx­
imation, in which case Theorem 1 implies that the components of every
vector A in R" satisfy the conditions

I
" I m I " I\' \' \' \"_ s(x) _ AJ;(X) <_ _ AJJZj) .

XE Y i 1 j - I i I

(15)

The terms that depend on {Zj;j = n + 1, n + 2..... m} have to be transferred
from the right to the left hand side of this inequality. The method that is used
depends on the following lemma. which is proved later.

LEMMA. Let Ijf be a real, continuous convex junction, defined on R". that
satisfies the homogeneity condition

ljf(aA) = lalljf(A), (16 )

Let (J and p be n-component vectors. such that the inequality

holds jar all A in R". Then the condition

( 17)

AE R". (18 )

is obtained. where e is a constant in the interval ~ 1 <e< I.

By letting (J be the vector whose components have the values {I: s(x) IJx);
i = 1. 2, ... , n}, by letting Ijf be the function

AE R", (19)
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and by letting the components of p have the values \I;(Z/11): i = L L ... , 11 f, it
follows by applying the lemma to expression (15) that the inequality

(20)

holds, where e/11 satisfies condition (12). This method is used inductively to
deduce the bound

(21 )

where the moduli of the numbers {OJ; j = n + 1, 11 + 2, ... , m f do not exceed
one. It is now straightforward to obtain condition (13) from the special case
when A is a coordinate vector.

Proof of Lemma. By Corollary 13.2.1 of 131, there exists a closed convex
set C in R", such that Ijf is the function

Therefore expression (17) implies the bound

A~ R". (22)

Hence the inequality

(23 )

holds, where C+ is the convex set

AE R", (24)

(25)

Expression (24) and Theorem 13.1 of [31 show that 0 is in the set C +.

Therefore there exists 0 in 1-1,11 such that the vector (0 + ep) is in C. It
follows from equation (22) that the condition

AER", (26)

is obtained. The required inequality (18) is now a consequence of the fact
that Ijf(A) and Ijf(-J..) are equal.

Theorem 3 is useful in practice, because the tests (12) and (13) for a best
discrete L r approximation can be made conveniently by a linear
programming calculation in only (m - n) variables. It is straightforward to
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generalize the theorems of this paper to the case when one reqUires an
element in A that minimizes the expression

\' w(x) If(x) - ¢(x)l,
XEX

!PEA, (27)

where the numbers lw(x): x E Xf are given positive weights.
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